Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37896699

RESUMO

The purpose of this work is to advance in the computational study of connectome graphs from a topological point of view. Specifically, starting from a sequence of hypergraphs associated to a brain graph (obtained using the Boundary Scale model, BS2), we analyze the resulting scale-space representation using classical topological features, such as Betti numbers and average node and edge degrees. In this way, the topological information that can be extracted from the original graph is substantially enriched, thus providing an insightful description of the graph from a clinical perspective. To assess the qualitative and quantitative topological information gain of the BS2 model, we carried out an empirical analysis of neuroimaging data using a dataset that contains the connectomes of 96 healthy subjects, 52 women and 44 men, generated from MRI scans in the Human Connectome Project. The results obtained shed light on the differences between these two classes of subjects in terms of neural connectivity.


Assuntos
Conectoma , Masculino , Humanos , Feminino , Conectoma/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Voluntários Saudáveis
2.
Sensors (Basel) ; 23(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37430900

RESUMO

Underwater imaging has been present for many decades due to its relevance in vision and navigation systems. In recent years, advances in robotics have led to the availability of autonomous or unmanned underwater vehicles (AUVs, UUVs). Despite the rapid development of new studies and promising algorithms in this field, there is currently a lack of research toward standardized, general-approach proposals. This issue has been stated in the literature as a limiting factor to be addressed in the future. The key starting point of this work is to identify a synergistic effect between professional photography and scientific fields by analyzing image acquisition issues. Subsequently, we discuss underwater image enhancement and quality assessment, image mosaicking and algorithmic concerns as the last processing step. In this line, statistics about 120 AUV articles fro recent decades have been analyzed, with a special focus on state-of-the-art papers from recent years. Therefore, the aim of this paper is to identify critical issues in autonomous underwater vehicles encompassing the entire process, starting from optical issues in image sensing and ending with some issues related to algorithmic processing. In addition, a global underwater workflow is proposed, extracting future requirements, outcome effects and new perspectives in this context.

3.
Sensors (Basel) ; 22(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36560164

RESUMO

The tracking problem (that is, how to follow a previously memorized path) is one of the most important problems in mobile robots. Several methods can be formulated depending on the way the robot state is related to the path. "Trajectory tracking" is the most common method, with the controller aiming to move the robot toward a moving target point, like in a real-time servosystem. In the case of complex systems or systems under perturbations or unmodeled effects, such as UAVs (Unmanned Aerial Vehicles), other tracking methods can offer additional benefits. In this paper, methods that consider the dynamics of the path's descriptor parameter (which can be called "error adaptive tracking") are contrasted with trajectory tracking. A formal description of tracking methods is first presented, showing that two types of error adaptive tracking can be used with the same controller in any system. Then, it is shown that the selection of an appropriate tracking rate improves error convergence and robustness for a UAV system, which is illustrated by simulation experiments. It is concluded that error adaptive tracking methods outperform trajectory tracking ones, producing a faster and more robust convergence tracking, while preserving, if required, the same tracking rate when convergence is achieved.


Assuntos
Dispositivos Aéreos não Tripulados , Simulação por Computador
4.
Evol Bioinform Online ; 14: 1176934318767889, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29662297

RESUMO

Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes-master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)-is carried out for this problem. Several procedures that optimize the use of the GPU's resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent sequential single-core implementation running on a recent Intel i7 CPU. This work can provide useful guidance to researchers in biology, medicine, or bioinformatics in how to take advantage of the parallelization on massively parallel devices and GPUs to apply novel metaheuristic algorithms powered by nature for real-world applications (like the method to solve the temporal dynamics of GRNs).

5.
Pattern Recognit Lett ; 83(1): 49-58, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30546181

RESUMO

In [14], a topologically consistent framework to support parallel topological analysis and recognition for 2D digital objects was introduced. Based on this theoretical work, we focus on the problem of finding efficient algorithmic solutions for topological interrogation of a 2D digital object of interest D of a presegmented digital image I, using 4-adjacency between pixels of D. In order to maximize the degree of parallelization of the topological processes, we use as many elementary unit processing as pixels the image I has. The mathematical model underlying this framework is an appropriate extension of the classical concept of abstract cell complex: a primal-dual abstract cell complex (pACC for short). This versatile data structure encompasses the notion of Homological Spanning Forest fostered in [14,15]. Starting from a symmetric pACC associated with I, the modus operandi is to construct via combinatorial operations another asymmetric one presenting the maximal number of non-null primal elementary interactions between the cells of D. The fundamental topological tools have been transformed so as to promote an efficient parallel implementation in any parallel-oriented architecture (GPUs, multi-threaded computers, SIMD kernels and so on). A software prototype modeling such a parallel framework is built.

6.
Adv Image Video Technol ; 9555: 98-109, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-28547005

RESUMO

A design and implementation of a parallel algorithm for computing the Region-Adjacency Tree of a given segmentation of a 2D digital image is given. The technique is based on a suitable distributed use of the algorithm for computing a Homological Spanning Forest (HSF) structure for each connected region of the segmentation and a classical geometric algorithm for determining inclusion between regions. The results show that this technique scales very well when executed in a multicore processor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...